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1.  Introduction

Materials performance and degradation are significantly 
affected by the evolution of defect structures over long 
time scales [1]. Computational modeling and simulation 
have become an effective and widely established quantita-
tive approach to studying materials, and can constructively 
complement the theoretical and experimental methods [2]. 

However, there is still a formidable challenge to predict mate-
rial behavior over experimental time scales with traditional 
atomistic simulations. Although the aging of materials takes 
place in the time scale of years (~107 s [3]), the most widely 
used atomistic technique, molecular dynamics (MD) simula-
tion, can hardly go beyond nano seconds (~10–9 s).

Properties of condensed matter rely on interaction between 
the atoms in the system, governed by the landscape of the 
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Abstract
This paper presents an extension of the autonomous basin climbing (ABC) method, an 
atomistic activation-relaxation technique for sampling transition-state pathways. The extended 
algorithm (ABC-E) allows the sampling of multiple transition pathways from a given 
minimum, with the additional feature of identifying the pathways in the order of increasing 
activation barriers, thereby prioritizing them according to their importance in the kinetics. 
Combined with on-the-fly kinetic Monte Carlo calculations, the method is applied to simulate 
the anisotropic diffusion of point defects in hcp Zr. Multiple migration mechanisms are 
identified for both the interstitials and vacancies, and benchmarked against results from other 
methods in the literature. The self-interstitial atom (SIA) diffusion kinetics shows a maximum 
anisotropy at intermediate temperatures (400~700 K), a non-monotonic behavior that we 
explain to originate from the stabilities and migration mechanisms associated with different 
SIA sites. The accuracy of the ABC-E calculations is validated, in part, by the existing results 
in the literature for point defect diffusion in hcp Zr, and by benchmarking against analytical 
results on a hypothetical rough-energy landscape. Lastly, sampling prioritization and 
computational efficiency are demonstrated through a direct comparison between the ABC-E 
and the activation relaxation technique.
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potential energy surface (PES [4]). Several atomistic simulation 
methods have been developed based on biased dynamics and 
the concept of escaping from deep-energy minima on the PES in 
static calculations to effectively capture events that would take 
place over long periods. The family of biased dynamics tech-
niques include hyperdynamics [5–7] and temperature-accel-
erated dynamics (TAD [8]) methods, to boost the rare event 
transition. In hyperdynamics, a biased potential ΔV is added on 
the system’s PES, and the transition can be boosted by a factor of  

ΔV k Texp[ / ]B . The TAD method speeds up the transitions by 
increasing the temperature, and then extrapolates to a low-
temperature  regime, following the Arrhenius behavior, while 
filtering out the transitions that should not have occurred at 
the required temperature. Although the hyperdynamics method 
especially can be very accurate, there are computational chal-
lenges in the implementation of the bias potential—i.e. the 
bias potential must be zero at the dividing surfaces between 
the minima, and the identification of this bias form requires 
very high computational load. Recently, significant improve-
ments have been made in calculating the bias potential more 
efficiently using the adaptive boost (AB) method [9, 10].

Static approaches that evolve the system on its PES include 
activation relaxation technique (ART [11, 12]), Dimer method 
[13], and autonomous basin climbing (ABC) method [14]. In 
both the ART and Dimer methods, multiple transition path-
ways associated with a given minimum-energy state can be 
captured, and this is performed by introducing perturbations 
to the initial state along different directions. Since the pertur-
bations are randomly induced, the activation energies for the 
identified transitions also appear in a random order in this 
search. All the observed transitions are stored in the reaction 
catalogue, which serves as the input parameters for the fol-
lowing kinetic Monte Carlo (kMC) simulation [15–18]. The 
ART and Dimer method have been successfully applied to a 
series of studies, including the diffusion of point defects [13, 
15–19], heat release from ion-implanted amorphous Si during 
its relaxation [20], and the plastic flow in glassy materials [21]. 
However, these methods may face unaffordable computation 
loads when simulating complex systems with many competing 
events during the material evolution. The reason is that for a 
complex non-equilibrium process, each minimum energy state 
is connected to many other states, each new observed state is 
connected to more states, and so on. Therefore, such a breadth-
first search algorithm can easily become very expensive com-
putationally. For example, in a recent study on the annihilation 
of a dislocation-dipole [22], Wang et al showed that the ART 
could not drive the system to the final state due to the ‘very 
high computational load’, and had to employ the ABC method 
to observe the dipole dissociation processes.

The ABC algorithm is also based on the activation-relax-
ation procedure, and explores and reconstructs the system’s 
potential energy surface. It was developed by Kushima et al 
in computing the viscosity of supercooled liquids [14], and is 
inspired by Laio and Parrinello’s idea of escaping from the free-
energy minima [23]. By adding a series of penalty functions 
into the given basin on the PES, the ABC algorithm evolves 
the system along the pathway that has the lowest energy bar-
rier without prior assumption of the reaction coordinates. This 

feature enables the ABC method to capture the dominant path-
ways of system evolution, where the states are connected in 
series over a 1D chain. Recently, Cao et al further optimized 
the ABC method by introducing a self-learning algorithm [24], 
which can significantly reduce the computational cost. The 
implementation of the ABC algorithm is technically straight-
forward, and has been demonstrated to accurately capture the 
mechanism and kinetics of a series of unit processes, including 
the unfaulting of a self-interstitial atom (SIA) cluster in bcc 
Fe [25], the structure of a vacancy cluster in fcc Al [26], and 
the dislocation motion and structure [22, 27] and interaction 
of dislocation with obstacles in both hcp Zr and bcc Fe [28, 
29]. However, when there are multiple competitive processes 
simultaneously, because of the 1D nature of the system evolu-
tion, the original ABC method overestimates the system evolu-
tion time [30–32]. This paper extends the ABC algorithm so 
that it can now capture multiple competing transition pathways 
from each minimum energy state explored on the PES.

In this paper, we discuss the underlying reason for overesti-
mating the evolution time by comparing the original ABC method 
with analytical transition state theory (TST) and kMC results. 
We describe the new algorithm that extends ABC (ABC-E) to 
capture multiple transition pathways from an individual basin on 
the PES. The ABC-E algorithm is benchmarked against the ana-
lytical results on a hypothetical rough PES. We also demonstrate 
the prioritization of sampled paths by ABC-E and the relative 
computational efficiency by comparing the ABC-E method and 
ART in the simulation of vacancy migration in hcp Zr.

ABC-E and kMC calculations are employed to simulate the 
point defect diffusion in an anisotropic material, hcp Zr. Point 
defect diffusion is important in governing the evolution of 
microstructure in Zr alloys, which are widely used as cladding 
materials of nuclear fuel in light water reactors (LWR [33]). 
For safety and operational purposes, it is important to be able 
to predict the mechanical properties of Zr, which are largely 
dependent on the defect evolutions [34–39]. Furthermore, the 
point defect diffusion in hcp Zr is an ideal problem to test 
the accuracy of the new algorithm, ABC-E, because the diffu-
sion of vacancies and interstitials can take place via dissimilar 
migration paths and sites in this structure. The results show 
that ABC-E samples effectively multiple inequivalent transi-
tion pathways for the migration of point defects in hcp Zr. 
The extent of anisotropy in the diffusivity of point defects is 
assessed as a function of temperature. We find that the SIA 
diffusion exhibits a non-monotonic behavior of isotropic-
anisotropic-isotropic transitions with increasing temperature. 
This behavior originates from different stabilities and migra-
tion mechanisms associated with different SIA sites when 
using the MA07 interatomic potential [40]. This result is in 
contrast to previous findings using a different potential [41], 
because the two potentials provide different relative stabilities 
of the SIA sites.

2.  Methodology

As noted above, it is possible that the original ABC method 
can overestimate the system evolution time scale in the case 
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of multiple competitive processes [30–32]. In this section we 
introduce the underlying reason for the time overestimation 
by comparing the ABC method with analytical TST and kMC 
results. Then we modify the ABC algorithm to ABC-E to cap-
ture multiple transition pathways from an individual basin on 
the PES. This extension significantly improves the accuracy 
of the calculated time of evolution. A very brief summary of 
the result of ABC-E in comparison to ABC and analytical TST 
was recently reported [32]. Here we provide the description of 
the new algorithm and its comparison to TST in detail.

2.1. Transition state theory and full catalogue kinetic monte 
carlo method

For a given transition network, according to TST, the evo-
lution time from the initial (‘i’ in figure 1) to the final state  
(‘f ’ in figure 1) can be calculated as the following:

If state p and q are connected with each other, following 
TST, the jump frequency from p to q can be derived by:

⎡
⎣⎢

⎤
⎦⎥= −k k

E

k T
exp ,p q

p q

B
, 0

,
� (1)

where the prefactor k0 is the attempt frequency, and Ep,q is the 
activation energy from state p to q. The residence time from 
state p is given by:

τ =
+ + ⋯ +k k k

1
,p

p p p n p,1 ,2 , ( )
� (2)

where n p( ) is the number of neighboring nodes connected 
with state p.

The evolution time from i to f can therefore be calculated as:
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and similarly, for other unknown variables such as →t f1 , the 
definition follows:
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We can rewrite the above equations into the matrix expression 
as below:
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The evolution time →ti f  can be analytically derived by 
diagonalizing the n*n matrix above, where n is the number 
of nodes in the system. In reality, the dimension n can be 
very large, which makes the analytical solution very diffi-
cult to obtain. Therefore, kMC [42–44] is widely employed 
to get the approximated numerical solution. The more tran-
sition states are explored, the higher the accuracy of the 
kMC simulations [42]. Therefore, algorithms that can effi-
ciently identify the important transition pathways and cor-
responding energy barriers are desirable. As stated earlier, 
the aim of the present work is to improve the capabilities of 
the ABC algorithm. The original ABC method is inherently 
most likely to capture only the dominant transitions in a 1D 
chain (shown below). This approach was proven successful, 
especially in finding the governing mechanism in the evo-
lution of non-equilibrium systems. On the other hand, in 
a system whose evolution is described by competing pro-
cesses, the original ABC algorithm is not sufficient to 
describe the true kinetics. To overcome this challenge, we 
penalize the system from the same basin multiple times in 
the original ABC framework, while blocking the observed 
transitions. This new algorithm, ABC-E, is then able to cap-
ture arbitrarily more transition states (seen below), thereby 
building the rate catalog as accurately as possible for kMC 
simulations.

Figure 1.  Illustration of the system evolution from one minimum 
energy state to another on the PES in the form of a nodal network, 
with the initial state ‘i’ and the final state ‘f ’.
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2.2. The 1D nature of the original ABC algorithm

Now let’s revisit the transition network discussed above with the 
original ABC method. The ABC algorithm evolves the system 
mainly towards the pathway with the lowest barrier, while 
neglecting other, higher-barrier pathways. Therefore, for the 
same system, ABC will provide an evolution chain that connects 
the transition paths in 1D instead of a network (seen in figure 2).

Since for this 1D chain, each state is only connected with 
one state before it and one state after on the nodal network of 
states, the residence time for state p is given by:

τ =
+− +k k

1
p

p p p p, 1 , 1
� (6)

And similarly, the evolution time from i to f can be calcu-
lated by solving the following linear equations:

Figure 2.  Illustration of the system evolution from one minimum energy state to another on the PES in the form of a nodal network, 
with the initial state ‘i’ and the final state ‘f ’. The collection of states and connectivities are the same as in figure 1. An evolution chain is 
provided by the ABC algorithm as the red path on the left, corresponding to the PES of a 1D chain of transitions illustrated on the right.

Figure 3.  (a) (Adapted with permission from [32]). A pre-constructed 2D PES with a rough landscape, for representing the system 
evolution from i to f with multiple competing processes. (b) A variation of the evolution time with temperature sampled by full-catalog 
kMC (with two different rc), ABC, and ABC-E.
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The dimension for the above matrix is the length of the 1D 
chain, which is significantly smaller than the total number of 
nodes in the system. In addition, the matrix has the banded 
tridiagonal structure, which is much simpler than the matrix 
in the last section for a full catalog of events and transitions. 
kMC can also be employed based on this reduced matrix 
to calculate the evolution time →ti f . Because of the reduced 
dimension and simpler underlying mathematical structure, 
the ABC-based kMC method saves substantial computational 
load compared to the full-catalog kMC calculations.

Despite the successful implementation of the original ABC 
method in a series of studies on different unit processes [14, 
25–27, 45–47], the 1D nature of the ABC method can lead 
to an overestimation of the system evolution time [30–32] if 
there are multiple competitive processes governing the system 
evolution. To give an illustration we consider a synthetic 
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comparison between ABC and full catalogue kMC using a 
pre-constructed hypothetical 2D PES (figure 3(a)). To simu-
late a scenario with multiple processes, we randomly intro-
duced 100 intermediate minima with varying depths and 
widths (figure 3(a)) to form a rough energy landscape con-
necting the initial and final states. In the kMC simulations, 
the transition catalog is defined by a cut-off radius rc. In other 
words, if the distance between two minima is smaller than 
rc, then the two states are defined as connected and a direct 
transition between them is allowed. In the kMC simulations, 
for a state with residence time τ, a random number  between 
0 and 1 is generated during each step, and the time is pre-
ceded by the amount −τ/ln(μ), following the kMC convention 
[42–44]. Note that rc is an empirically chosen parameter in 
kMC simulations, and below we demonstrate the effect of 
the choice of rc in the quantitative results. A 1D trajectory of 
events describing the evolution from the same prescribed ini-
tial state to the final state was found using ABC calculations; 
this was used to estimate the temperature-dependent system 
evolution time and the effective activation energy in the kMC 
method, statistically averaged over hundreds of simulations.

As shown by the Arrhenius plot in figure 3(b), the slope of 
the ABC results is identical to the full-catalog kMC results, 
which indicates that both results give the same effective bar-
rier. This demonstrates that ABC is providing the dominant 
transition pathway. On the other hand, the evolution time in 
ABC results is overestimated by about two orders of magni-
tude, in this case compared to kMC with rc = 0.2. This results 
from the 1D nature of the original ABC algorithm, because the 
residence time at each state, as introduced above, is governed 
by +k k1/( )forward backward , whereas in kMC simulations using 
a full catalog of transition pathways, it is governed by ∑ k1 / i.  
Therefore, the evolution time calculated by the ABC method 
for a scenario with multiple competing processes can be over-
estimated here because ∑+ >k k k1 / ( ) 1 / iforward backward . On 
the other hand, the magnitude of the overestimation by ABC 
compared to kMC simulations also depends on the accuracy 
of the full-catalog kMC results with a selected value of rc. 
We show two kMC results in figure 3(b) with different cut-off 
radii of 0.2 and 0.15. For the larger cut-off radius, the tran-
sition catalog is more extensive than for the smaller cut-off 
radius, and thus, yields a faster evolution time. However, this 
does not mean that all the events sampled with the larger rc 
are directly connected to the original state, and if rc is too 
large, the simulation might include unphysical transitions. 
Regardless of the precise accuracy of the kMC method, the 
comparison in figure 3(b) demonstrates that the time overesti-
mation in the original ABC algorithm is due to the 1D nature 
of the identified transitions, rather than an inherent limitation 
of finding the dominant pathway.

In particular for non-equilibrium processes, the ABC 
method has been shown to be able to find the governing evo-
lution pathways. For instance, in our recent work [29] in simu-
lating dislocation-defect interactions in metals as a function 
of strain rate and temperature, it is demonstrated that ABC 
gives exactly the same mechanism and kinetics as MD simula-
tions in the fast strain-rate regime, and in the slow strain-rate 

regime, it gives results that are credible and consistent with 
experiments. Another recent study by Wang, et al [22] on 
the annihilation of dislocation dipoles also shows that ABC 
could well explain the observations from experiments. In 
another example simulating the vacancy-clustering process, 
both ABC [31] and k-ART [30] give the void nucleation and 
growth behavior similarly, and the key difference is the time 
scales predicted by the two methods. (ABC as the one overes-
timating the timescale.)

2.3.  Extension of the ABC (ABC-E) method to sample 
multiple transition pathways

To address the concern over the time overestimation explained 
above, the ABC method is modified by the following algo-
rithm to sample multiple transition pathways in the system 
evolution:

	 1.	For a given initial state, apply the original ABC algorithm 
steps until the first neighboring state is observed. Each 
original ABC step consists of two stages—activation and 
relaxation. During the activation stage, a penalty function 
in Gaussian form [14] is added into the given basin on 
PES. The activation is then followed by a relaxation stage 
to minimize the energy of the system. In the examples 
studied in this work, each relaxation stage consists of 500 
force evaluations through the steepest descent method.

	 2.	Record the new state, and put the system back to the 
previous state.

	 3.	Add a blocking penalty function (also in Gaussian form) 
on the previously observed saddle point. The detailed 
parameters of the blocking penalty function are shown in 
the beginning of section 3 for the studied system in this 
paper.

	 4.	Implement regular ABC steps until the next new minimum 
energy state is observed.

	 5.	Judge whether a new state or a previously visited state is 
found: (a) if it is a previously visited state, then put the 
system back to the previous state, and add an additional 
blocking function on the saddle point; restart step 4. (b) if 
it’s a new state, go to step 2.

	 6.	A note on finding the activation energy barrier values: in 
principle, the minimized energy just before the system 
escapes into a new minimum energy state represents the 
energy of the saddle point. The energy difference between 
the saddle point and the initial minimum state is the 
activation energy for that particular pathway. However, 
because of the penalty functions, the activation energy 
can be overestimated in the ABC or ABC-E methods. 
We take the pathways (i.e. mechanisms) identified by 
steps 1–5 above. To enable better accuracy in the com-
putation of kinetics based on those pathways, we employ 
the nudged elastic band method to calculate the precise 
values of activation energies connecting these pathways 
determined by ABC-E.

By doing so, a series of states that neighbor the original 
state are found. The order of finding these new states is with 
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increasing activation barriers. The more the identified tran-
sitions, the more accurate the results. The criteria for stop-
ping the search for more states can be defined in two ways. 
An easy criterion is to set a maximum number of total pen-
alty functions to be added to the entire simulation in steps 
1–5 described above, Nsteps

MAX, and consider all the identified 
transition pathways within this upper bound of search steps. 
Specifically, let us denote n1 as the number of penalty func-
tions added before detecting the first connected state to the 
original minimum. Once the first connected state is found, the 
system is set back to the original state, following the proce-
dures explained above. Let us assume it then takes another n2 
steps to find the second connected state to the original min-
imum-energy state. The search is terminated after observing 

the ith state, such that ∑ ∑≤ <
=

=

=

= +
n N n

j

j i
j steps

MAX
j

j i
j

1 1

1
, where nj 

represents the number of ABC steps in the search for the jth 
state. This criterion is suitable for situations in which there are 
not too many different transition states, because under such a 
circumstance, a reasonable choice of Nsteps

MAX can be enough to 
search the complete transition states. For example, our experi-
ences on a hypothetical 2D PES and on the anisotropic dif-
fusion of point defects in Zr (discussed in the next section) 
suggest that assuming Nsteps

MAX to be in the order of a few hun-
dred is sufficient to get converged results.

A second criterion can be defined by the following. We 
assume the number of the already-observed states is Nstates

obs ,  
with the associated barriers, from low to high, as Eobs

1 , 
…E E, ,obs

N
obs

2 states
obs . Once a new state is found with the barrier 

Enew, we compare the relative probability of this transition 
with respect to the previously observed states at a given tem-
perature by calculating

⎜ ⎟
⎛
⎝

⎞
⎠∑

α =
−

−

( )
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E
k T
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exp

exp
.

E
k T

N

i
B

obs

B

new

states
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� (8)

If the calculated α T( ) is very small, which means the new 
state has only negligible probability to be visited, then the 
search process can be terminated. The rule of thumb for the 
specific value of α T( ), following other, similar truncation cri-
teria used in the TAD [8] and kinetic-ART [18] methods, is 
around 0.1%.

The extension of the original ABC method, now called 
ABC-E, is further implemented into the on-the-fly kMC 
framework to more accurately estimate the kinetics of system 
evolution. We revisit the same benchmark problem on the 2D 
hypothetical PES, now sampled by ABC-E over hundreds of 
kMC simulations, and the results are shown in figure 3(b). It 
can be seen that the results of ABC-E show a much better 
numerical accuracy compared to the full-catalog kMC simula-
tions, as expected.

We would like to stress that, in terms of searching mul-
tiple transition paths, the ABC-E method is similar to ART 
and the Dimer method in that it can handle a growing amount 
of states and pathways. However, there are noticeable dif-
ferences between them. A detailed comparison between the 

ABC-E method and ART is shown later in section 5. Briefly, 
in ART and the Dimer method, once a transition pathway is 
captured, the system is set back to the original state and dis-
placed along different random directions to find other transi-
tion pathways associated with the given minimum state. On 
the other hand, in the ABC-E framework, since the system 
prefers to evolve towards the lowest available saddle point, the 
order of observed transition states is with increasing activation 
barrier. In practice, it is possible that ABC-E finds a transi-
tion with a higher barrier before the one with a lower barrier 
(i.e. a reverse-order problem) when the saddle points energy 
differences are quite small compared with the penalty energy 
parameter used in ABC-E. Overall, however, we observe the 
general increasing trend in the barrier heights, as shown in 
section 5. This algorithm therefore prioritizes the important 
transitions. And this feature can help ABC-E build the impor-
tant transition catalog more efficiently.

As demonstrated in section  5, during the sampling pro-
cess, we observe two additional features that make ABC-E 
appealing in practice. First, in ABC-E, different searches are 
not completely independent of each other. In contrast, once 
the first pathway is observed, the successive searches do not 
start from the very bottom of the basin. Instead, the succes-
sive searches start from the current level of the partially filled 
basin. Not having to start each search from the bottom of the 
basin makes the sampling of transition pathways more effi-
cient, as the observed pathways increase. Second, by blocking 
the visited saddle points, ABC-E can effectively prevent the 
observed transitions from being found many times. Such a 
decrease in redundancy rate therefore increases the sampling 
efficiency. For example, Malek et al show that [48], a lot of 
pathways are found multiple times in ART, and the redun-
dancy probability is about 68.6%–92.9%, depending on the 
parameters used in ART. In the ABC-E method, since the 
observed saddle points are blocked by the penalty function, 
the redundancy rate is much lower. We would like to stress 
that the efficiencies of different methods largely depend on 
the parameters used and the system at hand, and that different 
modeling techniques have their own advantages for different 
types of problems. A more thorough comparison between dif-
ferent techniques is warranted in the future.

3.  Migration mechanisms of point defects in hcp Zr

Hcp Zr is an anisotropic material, and there are multiple 
inequivalent transition pathways on which the point defects 
can migrate. For example, there are two migration paths for 
vacancy diffusion, one on the basal plane and one out of the 
basal plane. Self-interstitial atom (SIA) migration has many 
more pathways in hcp Zr compared to vacancy migration. It 
is impossible for the original ABC method to capture all pos-
sible migration mechanisms because it can only provide the 
lowest-barrier mechanism and would inaccurately estimate 
the diffusion kinetics of point defects in Zr. In this section, 
we employ ABC-E to simulate the anisotropic diffusivities 
of vacancy and SIA in Zr. The migration mechanisms and 
the corresponding activation energy barriers of point defects 
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are identified by ABC-E, and they are, in part, benchmarked 
consistently with other methods reported in literature. The 
transition pathways and energy barriers are then input into 
on-the-fly kMC simulations to study the anisotropic diffusion 
kinetics of point defects in Zr. An interesting behavior for the 
SIA diffusion was found: specifically, a non-linear isotropic-
anisotropic-isotropic transition in diffusivities with increasing 
temperature has been observed, arising from the temperature 
dependence of the stable SIA structure.

The dimension of the simulation cell is 38.8A*39.2A*41.3A, 
containing 2688 Zr atoms. To simulate the vacancy, an atom 
is extracted from the bulk, while for SIA an extra atom is 
inserted into the system. Periodic boundary conditions are 
applied for all directions. A recent embedded atom method 
(EAM) potential developed by Mendelev et al [40] (MA07) 
is employed. For vacancy migrations, penalty parameters 
of 0.5 eV, 0.25 A2 (for both the regular bias filling function 
and the blocking function) are employed in ABC-E. For SIA 
migrations, penalty parameters of 0.01 eV and 0.05 A2 are 
employed in ABC-E.

3.1.  Vacancy migration pathways

By employing the ABC-E method, we observed two migra-
tion mechanisms for vacancy diffusion—i.e. in the basal plane 
and out of the basal plane. The in-plane migration (M1) had 
a lower barrier 0.68 eV compared to the out-of-plane migra-
tion (M2), which had a 0.76 eV barrier. Both migration paths 
had a degeneracy of six. The derived mechanisms and barriers 
are consistent with other results reported independently by 
Subramanian et al using TAD simulations [49].

3.2.  SIA migration pathways

The migration of a SIA in Zr is much more complicated than 
that of a vacancy since the SIA can exist at different interstitial 

sites. Here we consider six possible interstitial sites based on 
the geometry of hcp crystals. These are the octahedral (O), 
basal octahedral (BO), tetrahedral (T), basal tetrahedral (BT), 
crowdion (C), and basal crowdion (BC), as shown in figure 5. 
According to previously reported DFT calculations [50, 51], 
the split (S) configuration is another candidate site for the 
interstitial. However, these S structures are very unstable [49] 
and can exist in multiple slightly different configurations, 
which makes the assessment uncertain [49, 52]. Therefore, we 
did not consider the S site in the analysis.

To check the stabilities based on formation energies for 
an SIA at these interstitial sites, we insert an extra atom into 
each interstitial site (one at a time) and then relax the system 
by the steepest descent algorithm. It can be seen in figure 6 
that, among the six interstitial sites, only three stable struc-
tures arise. Both the perfect O and C sites decay to a distorted 
O site with the degeneracy of six. Both the T and BT sites are 
unstable and decay to the BC site. The BO site is energeti-
cally stable.

The energetics for these sites with the MA07 potential are 
summarized in table 1 below. We define the formation energy 
of an SIA at different sites as:

= − + ⋅+E E
N

N
E

1
,f

SIA
tot
N

perfect
N1

where +Etot
N 1 represents the total potential energy of the system, 

including the SIA, while Eperfect
N  is the potential energy of a 

perfect hcp Zr system containing N atoms.
The distorted O site is relatively more stable, with the for-

mation energy of 2.74 eV. The formation energies for the BC 
and BO sites are 2.83 eV and 2.86 eV, respectively. The rela-
tive stability of the O site is consistent with previous works 
using the same potential [40, 53] and several DFT calculations 
[50, 51]. However, the quantitative results differ, and the dis-
crepancies might arise from the size of simulation cells used 
in various reports [50, 51, 53, 54]. It is notable that all three 

Figure 4.  The in-plane (M1) and out-of-plane (M2) migration paths 
for a Zr vacancy in the hcp crystal. Both of these paths are captured 
by the ABC-E algorithm sequentially. The red spheres represent 
the atoms on the lattice points, while the blue square represents the 
missing atom—i.e. the vacancy.

Figure 5.  Six possible interstitial sites in a hcp crystal, shown 
by green spheres. The red spheres represent the atoms on the 
lattice points.
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SIA sites have comparable energies, and therefore SIAs are 
expected to be present comparably at all of these three sites at 
elevated temperatures.

We identified the migration mechanisms and the cor-
responding activation energies of SIA diffusion in hcp Zr 
using the ABC-E method. Two key mechanisms describe the 
migration of SIA: the O-mechanism and the BC-mechanism, 
respectively.

	 1.	 O-mechanism
		  Starting from the O state (as shown in figure 6), there are 

mainly three migration pathways.
	(1.a)	Direct O-O hopping. As shown in figure  7 below, the 

O state SIA directly migrates to the 1st and 2nd nearest 
neighbor (NN) O states, with the migration barriers of 
0.028 eV and 0.062 eV, respectively.

	(1.b)	O-M1-BC migration. As shown in figure  8 below, the 
SIA in the O state first moves away from the middle 
plane and evolves to a middle state M1, where the extra 
atom stays slightly above the basal plane. Then the SIA 
moves further downward to the basal plane and forms 

the BC state. Although figure 8 shows only one pathway 
of O-M1-BC, the O-M1 transition actually has a degen-
eracy of two, i.e. the SIA can move either upward or 
downward, and eventually leads to two BC states on 
different basal planes. The associated migration barriers 
are also marked in the figure. The effective barrier from 
O state to BC state is about 0.13 eV, while the effective 
barrier from BC state to O state is around 0.04 eV. It can 
be seen that M1 is quite unstable due to the small transi-
tion barriers to either O or BC state.

	(1.c)	O-M2-O migration. The O-M2-O migration is an inter-
stitialcy mechanism. As shown in figure  9 below, the 
extra atom in O state first moves away from the middle 
plane and forms a dumbbell (M2) with the nearest atom 
in the basal plane. (This M2 is actually the split configu-
ration [49, 52].) Then the nearest atom is pushed to an O 
state in another unit cell. The degeneracy for the O-M2 
transition is two since there are two nearest-neighbor 
atoms to the SIA. The corresponding migration barriers 
are also marked in the figure. The effective barrier for 
this interstitialcy mechanism is around 0.1 eV. It can 
also be seen that M2 is an unstable state due to the very 
shallow minimum.

	 2.	 BC mechanism
		  Starting from the BC state (as shown in figure  6), we 

observe three migration pathways.
	(2.a)	BC-BC glide motion. Since BC is in crowdion structure, 

it easily glides with a low migration barrier 0.013 eV. 
The 1D glide motion has a degeneracy of two.

Table 1.  The formation energy of the SIA states in hcp Zr, and 
the comparison against previously reported results using the same 
MA07 potential.

SIA state
Current 
study (eV)

Mendelev  
et al [40] (eV)

Khater  
et al [53] (eV)

O 2.74 2.88 2.78
BO 2.86 2.90 N/A
BC 2.83 2.91 N/A

Figure 6.  Only three stable SIA sites, O, BC, and BO, are found to be stable in hcp Zr, among all the six possible geometric sites surveyed 
using the MA07 interatomic potential.
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	(2.b)	BC-M1-O migration. The mechanism is just the reverse 
pathway of O-M1-BC, with a barrier or about 0.04 eV. 
The configurations and barriers are shown above in 
figure 8. Notice that the BC-M1 transition has the degen-
eracy of two, since the middle atom in the crowdion can 
move either upward or downward.

	(2.c)	BC-BO-BC migration. As shown in figure 10 below, the 
middle atom in the crowdion migrates to the BO site 
in the basal plane. The BO site is not stable since the 
outgoing barrier is only 0.011 eV. Then the BO state 
migrates to the BC state, with a degeneracy of three. 
The corresponding migration barriers are also marked 
in the figure. The effective barrier for such BC rotation 
is about 0.03 eV.

All the SIA migration mechanisms that were found by 
ABC-E in hcp Zr are summarized in table 2. We compare the 
results to Subramanian et al’s recent calculations [49] by the 
TAD method, and most of the mechanisms are found consist-
ently by both the ABC-E and TAD methods, except for the 
S structure (and its migration paths) which was not consid-
ered in this work. The quantitative differences are small, in 
the range of error tolerance. In general, all the SIA migration 
barriers were found to be small (0.011–0.131 eV); therefore, 
SIAs in hcp Zr are expected to exhibit fast diffusion.

In summary, the SIA diffusion in hcp Zr is governed by a 
mix of 1D and 3D migration mechanisms comprising the fol-
lowing: the O state prefers to hop among the six degenerate 
neighboring sites in the basal plane with the lowest migration 

Figure 7.  Direct O-O hopping mechanism. O state can migrate to either the 1st NN O state or the 2nd NN O state, as shown in (a) and (b), 
respectively.

Figure 8.  O-M1-BC migration pathway and associated barriers for an SIA from the O state to the BC state. Notice that O-M1 transition 
actually has a degeneracy of two, although the figure above only shows one of them.
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barrier. The O state also has some probability to migrate to the 
O site in a neighboring basal plane via the O-M2-O mecha-
nism, and thus overall would exhibit a 3D migration com-
bining in-plane and out-of plane diffusion. In addition, the O 
state has a chance to evolve into the BC state via the O-M1-BC 
mechanism. Once the SIA transits to the BC state, the SIA 
migration will be mainly governed by the 1D glide motion 
in the basal plane with the smallest barrier. The BC state 
also has a probability to transform to another BC state along 
another direction in the same basal plane, via the BC-BO-BC 
mechanism. The BC state can jump back to the O state via the 
BC-M1-O mechanism. Overall, the O-M2-O mechanism pro-
vides a 3D motion, while the BC glide provides a 1D motion 
in the basal plane. The fraction of the 1D and 3D motion can 

change as a function of temperature because of the different 
activation energies of these mechanisms. Finally, we would 
like to note that the activation energies for the BC and BO 
mechanisms are very small (equivalent to less than 400 K). As 
a result, at temperatures higher than 400 K, the BC and BO 
mechanisms can be washed out by thermal fluctuation, and 
it would not be possible to resolve the different pathways. In 
the following part of this paper, when discussing the kinetics, 
we first assume the transition state theory is valid through 
the entire temperature regime, and then comment on how the 
kinetics would differ if the thermal fluctuations were to erase 
the mechanistic details.

4.  Anisotropic point defect diffusion kinetics  
in hcp Zr

4.1.  Vacancy diffusion kinetics

The derived mechanisms and barriers and the hcp geom-
etry for the vacancy migration are fed into the kMC model 
to simulate the diffusion kinetics. In the kMC simulation, 
we trace the coordinate of the vacancy as a function of the 
hops it makes in and out of the basal plane. Following the 
Arrhenius law, the vacancy migration rates in-plane and out-
of-plane can be expressed as = −k k E k Texp[ ]a a

M B0 1  and 

Table 2.  The summary on the SIA migration mechanisms in hcp Zr 
modeled by the ABC-E method.

Migration mechanism Governing barrier (eV)

O site O-O (1NN) 0.028
O-O (2NN) 0.062
O-M2-O 0.095
O-M1-BC 0.131

BC site BC-BC (glide) 0.013
BC-BO-BC 0.031
BC-M1-O 0.037

BO site BO-BC 0.011

Figure 9.  The O-M2-O migration pathway and the associated barriers. O-M2 transition has actually the degeneracy of two, although the 
figure above only shows one of the transitions.

Figure 10.  The BC-BO-BC migration pathway and associated barriers for the SIA. BO-BC transition has a degeneracy of three, although 
the figure above only shows one of them.
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= −k k E k Texp[ / ]c c
M B0 2 , respectively. With the assumption 

that both migration paths have the same pre-exponential factor, 
i.e. =k ka c

0 0, we then calculate the mean square displacement 
(MSD) of the vacancy, including the total MSD, <a> MSD (in-
plane) and <c> (out-of-plane) MSD. The total MSD is defined 
as = + +MSD r t r t r t( ) ( ) ( )tot x y z

2 2 2 , where x-y plane rep-
resents the basal plane and z represents the  <c>  direction. 
The MSD in <a> direction is therefore calculated as r t( )x

2 ,  
and the MSD in  <c>  direction is calculated as r t( )z

2 . The 
unit of MSD is the square of the lattice parameter on the basal 
plane, a2. Figure 11(a) shows a typical MSD plot at 1000 K. It 
can be seen in figure 11(a) that ≈ +< > < >MSD MSD MSD2tot a c .  
Furthermore, the slope of  <a>  MSD is steeper than that 
of <c> MSD, which indicates an anisotropically favored dif-
fusion kinetics on the basal plane compared to out-of-plane. 
The ratio between the c-axis and a-axis diffusivities, Dc/Da 
(which is equivalent to the ratio of the slope of the <c> MSD 
to the slope of the <a> MSD) as a function of temperature 
is shown in figure  11(b). The Dc/Da being significantly 
less than unity indicates a significant anisotropy in the dif-
fusion kinetics in the entire temperature range, with the 
higher temperatures leading to a less anisotropic behavior, 
as expected. This behavior is qualitatively consistent with 
Osetsky et al’s previous work [41], which used a different 
EAM potential [55].

4.2.  SIA diffusion kinetics

With all the derived mechanisms and associated barriers in 
section 3, we employ the kMC simulation to study the SIA 
diffusion in hcp Zr. According to transition state theory, the 
transition rate can be expressed as = −k k E k Texp[ / ]i i

i B0 ,  
where Ei and k i

0 are the reaction barrier and the pre-exponential 
factor, respectively. In our kMC simulations, all the transitions 

are assumed to have the same pre-exponential factor, i.e. 
≡ = −k k 10 si

0 0
13 1.

4.2.1.  SIA diffusion trajectories.  Starting from the origin at 
(0,0,0), the positions of the SIA are traced as a function of 
time. Figure 12(a) shows two SIA diffusion trajectories up to 
100 ps, at the temperatures of 300 K and 500 K.

It can be seen from figure 12(a) that the diffusion trajecto-
ries consist of ‘nodes’, which are connected by line segments. 
From the projections on the basal plane (figure 12(b)), it is 
clear that the ‘nodes’ are in the form of hexagons, which rep-
resent the direct O-O hopping mechanism on the basal plane. 
The short line segments connecting the neighboring hexagons 
are the O-M2-O migrations, while the long segments are the 
1D motion via BC-BC glide mechanism.

4.2.2.  Mean square displacement (MSD) of SIA diffusion.  The 
mean square displacement (MSD) of the self-interstitial atoms 
is calculated similarly to the vacancy MSD described above. 
Notice that the interstitial atom being traced during the MSD 
simulations is not necessarily the same initial interstitial atom, 
because the O-M2-O mechanism is an interstitialcy mecha-
nism and actually switches the initial interstitial atom with a 
lattice atom. In other words, overall, the MSD of the mass 
transport is being calculated here, from 100 K up to 900 K. The 
statistics have been demonstrated to be extremely important in 
calculating the diffusivities [56]. In this work, to increase the 
statistics, under each temperature 1000 kMC simulations were 
employed. In each kMC simulation, we collected the MSD 
data until 10 ns.

Figures 13(a)–(c) show the average MSD plots over 1000 
kMC simulations, at 150 K, 600 K, and 900 K, respectively. 
It can be seen from the figure that the slope of <a> MSD is 
slightly steeper than that of <c> MSD. The ratio between the 
c-axis and a-axis diffusivities, Dc/Da, is above 0.8 for the 

Figure 11.  (a) The total MSD for vacancy migration and its projection on the <a> and <c> directions in hcp Zr at 1000 K. The total MSD 
is defined as = + +MSD r t r t r t( ) ( ) ( )tot x y z

2 2 2 , where x-y plane represents the basal plane and z represents the <c> direction. The MSD 
in <a> direction is therefore calculated as r t( )x

2 , and the MSD in <c> direction is calculated as r t( )z
2 . The unit of MSD is the square of 

the lattice parameter on the basal plane, a2. It can be seen that ≈ +< > < >MSD MSD MSD2tot a c . (b) The ratio between the diffusivities along 
the <c> and <a> directions (Dc/Da) at various temperatures. All the results in (a) and (b) are based on the assumption that the pre-factors in 
the hopping rate of the two paths are the same.
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entire simulated temperature range, which indicates that the 
anisotropic effect is weak (figure 13(d)). On the other hand, 
the plot in figure 13(d) shows a very interesting non-mono-
tonic behavior; at the low temperature (T < 175 K), diffusion 
is more isotropic, contrary to the behavior of vacancy diffu-
sion. At intermediate temperatures (175 K  <  T  <600 K), the 
anisotropy increases as a function of temperature, with Dc/Da 
decreasing to 0.83.When the temperature is higher than 600 K, 

the anisotropy decreases as a function of temperature, with 
Dc/Da again increasing towards 1.00.

Although all the mechanisms introduced in section 3 con-
tribute to the diffusion along the  <a>  direction, the motion 
along the  <c>  direction can only arise from the O-M1-BC 
and O-M2-O mechanisms. Therefore, the diffusivity along 
the  <c>  direction, Dc, is a good indicator of the diffusion 
mechanisms at different temperatures. In figure 14 we plot Dc 

Figure 12.  (a) SIA diffusion trajectories up to 100 ps at 300 K and 500 K. (b) The projections of the trajectories from (a) on the basal plane.

Figure 13.  (a)–(c) The MSD along the <a> and <c> directions at 150 K, 600 K, and 900 K. (d) The ratio between the diffusivities along 
the <c> and <a> directions at various temperatures.
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as a function of temperature. It can be seen that the overall 
behavior fits well into an Arrhenius manner, with the effective 
barrier around 0.1 eV, which is a reflection of the O-M1-BC 
and O-M2-O mechanisms. (See table  2.) However, in the 
intermediate temperature regime between 400 K and 700 K, 
the slope of the curve is smaller (a lower barrier), which means 
the increase of Dc is slower with temperature in this regime.

The non-monotonic behavior in figure 13(d) and the slow 
increase of Dc at intermediate temperatures in figure 14 origi-
nate from the temperature dependence of the stability of the 
SIA site, which favors the O site at the lower temperatures. As 
shown in table 1, within the MA07 potential, the O state has 
lower formation energy than the BC state by about 0.1 eV. On 
the other hand, the O-M2-O mechanism has a lower migra-
tion barrier than the O-M1-BC mechanism by about 0.035 eV. 
Therefore, at low temperatures, the system mostly stays at the 
O state, and the diffusion is governed by the O-M2-O mecha-
nism, which displays a 3D diffusion and is more isotropic. As 
the temperature increases, the system has a higher probability 
to stay at the BC state. For the BC mechanism, as discussed 
above, the BC-BC glide has a lower barrier than the BC-M1-O 
migration. Therefore, the fraction of 1D motion, i.e. the ani-
sotropy, starts to increase. This explains the reason for the 
slow increase of Dc between 400 K and 700 K in figure  14. 
At high enough temperatures, the differences between all the 
transitions become insignificant, and the diffusion approaches 
an isotropic pattern.

The non-monotonic behavior shown in figure 13(d) is in 
contrast to a previous report [41], which shows a monotonic 
increase of isotropy as a function of temperature. The intera-
tomic potential is a critical factor that leads to the apparent 
difference in the results here compared to those in [39]. In 
[39], Osetsky et al used the AWB95 potential [55], which 
predicted the BC state to have the lowest formation energy 
[53]. Therefore, at the lower temperatures, too, the system has 
the highest probability of staying at BC state (in contrast to 
the O-site predicted by the MA07 potential in this work), and 
thus displays a 1D diffusion mechanism [41]. The 1D diffu-
sion will monotonically transition to a 3D diffusion at high 

temperatures. In this study, however, with the MA07 potential 
that predicts the O site to be the most stable, the dominant 
O mechanism is a 3D migration, as discussed in section  3. 
Therefore, the system shows a 3D diffusion at the low tem-
peratures. When the temperature increases, the system has 
a higher probability of staying at the BC state, shifting the 
diffusion mechanisms toward the 1D motion with increased 
anisotropy. At higher temperatures, all transitions are effec-
tively activated and the system shows a 3D diffusion with less 
anisotropy again.

It is worth noting that it is not possible to compare quanti-
tatively our simulated kinetic results (shown in figure 13(d)) 
one-to-one with experiments because of the very small energy 
barriers involved in some of the identified migration path-
ways. The mechanisms with low activation energies (e.g. BC 
and BO) will be indistinguishable at temperatures higher than 
400 K. However, the qualitative isotropic-anisotropic-iso-
tropic transition behavior is still expected to remain in general 
across the temperature range. This is because at low tempera-
tures, where the transition state theory is valid, the system has 
a higher probability of staying at the BC state as temperature 
increases, which leads to a higher fraction of 1D motion with 
increased anisotropy. The isotropic-to-anisotropic transition is 
thus retained. On the other hand, at high temperatures, where 
the transition state theory fails, the diffusion becomes more 
isotropic because the mechanisms become indistinguishable 
compared to random thermal vibrations. Therefore, the ani-
sotropic-to-isotropic transition is also retained, although this 
transition could happen earlier at lower temperatures than in 
figure 13(d).

5.  A demonstration of the sampling order and com-
putational efficiency of ABC-E

In this section, we show an illustrative example of the compar-
ison between the ABC-E method and ART, in terms of their 
capability of finding the low-energy saddles with higher prob-
ability and their computational expense. The vacancy hop-
ping in HCP Zr, shown above in section 3, is a good example, 
because all the pathways are known. In particular, there are 
two migration pathways: the in-plane (M1) and out-of-plane 
(M2) paths. The in-plane hopping, M1, has a lower barrier 
(0.68 eV) than the out-of-plane hopping, M2 (0.76 eV), and 
both pathways have a degeneracy of six. Therefore, in total 
there are 12 pathways, and the perfect order of finding these 
from the lowest to the highest energy barriers would be: M1, 
M1, M1, M1, M1, M1, M2, M2, M2, M2, M2, M2.

By the ABC-E method, with the penalty parameters of 
0.5 eV, 0.25 A2 (for both the bias filling function and the 
blocking function), all 12 pathways are identified within 86 
steps. Each step in the ABC-E method consists of 500 force 
evaluations, and the total computation involves 43 000 force 
evaluations. The order of pathways identified by ABC-E 
is: M1, M1, M1, M2, M2, M1, M2, M1, M1, M2, M2, M2 
(shown below in figure  15). It can be seen that the general 
trend of increasing order (from paths with low barriers to 
those with high barriers in the search) is retained. Admittedly, 

Figure 14.  The calculated diffusivity along the <c> direction at 
different temperatures. The effective barrier is ~0.1 eV.
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local reverse-finds exist because the saddle point energy dif-
ferences are quite small compared with the height of the pen-
alty function used in ABC-E.

We also searched for the migration paths for vacancy in 
hcp Zr by using ART as implemented in the code developed 
by Mousseau et al [57]. In the search, the magnitude of ini-
tial displacement was set as 0.1 Å, and the direction was ran-
domly chosen. When the curvature of the underlying potential 
energy surface was found to be less than −2 eV/Å2, the system 
was relaxed to the saddle point using the Lanczos algorithm. 
The saddle point convergence criterion was fulfilled when 
the overall force of the total system was less than 0.05 eV/Å. 
Starting from the same initial configuration, we tried 500 
searches with ART, which included 1 158 112 force evaluations 
in total. During these 500 searches, some results were unrea-
sonable because they were climbing the PES too high (as also 
noted in [12]), and some pathways were revisited many times 
(as discussed in [48]). On the other hand, not all the 12 path-
ways were identified. In particular, 10 different pathways were 
observed, and two of the M1 pathways were missing from the 
500 searches (as shown in figure 15). The order of 10 identi-
fied pathways by ART is: M2, M1, M2, M2, M2, M2, M1, M2, 
M1, M1. We noticed that there were reported observations that 
low energy saddles were more easily identified by ART [48]. 
However, as seen in figure 15, there is no clear order in the 
sequence of the pathways found by ART in this problem. We 
think the previous observation in [48] is empirical as there is 
no underlying algorithmic reason within ART for finding the 
pathways with increasing order of barrier heights.

The computational costs of ABC-E and ART are also 
shown in figure  15. It took 43 000 force evaluations for 
ABC-E to identify all 12 pathways. On the other hand, with 

a total of 1 158 112 force evaluations, 10 different pathways 
were identified by ART. Another appealing feature of ABC-E 
is that different searches are not completely independent of 
each other. In particular, once the first pathway is observed, 
the successive searches do not start from the very bottom of 
the basin. Instead, the successive searches start from the cur-
rent level of the partially filled basin. This procedure makes 
the sampling more efficient. As seen in figure  15, although 
it takes 10 steps (5000 force evaluations) to find the first 
pathway, all 12 pathways are identified in 86 steps (43 000 
force evaluations). This shows a noticeable increase of effi-
ciency in the later stages of sampling in ABC-E. On the other 
hand, with the same problem solved by ART, the numbers of 
force evaluations in different searches are always independent 
of each other, with an average number of force evaluations 
per search of about 2316 (the total force evaluations 1 158 112 
divided by 500 searches). As can be seen in figure 15, ART 
takes less time than ABC-E in finding the first three pathways. 
However, as the samplings continue, ART suffers the problem 
of redundant visits [48], which makes it less efficient than 
ABC-E overall. Particularly in this example, it took 43 000 
force evaluations for ABC-E and 1 158 112 force evaluations 
ART, respectively, meaning ABC-E is at least 25 times more 
efficient than ART (as ART did not find the complete set of 
paths within this search set).

In spite of the comparison shown above, we believe dif-
ferent modeling techniques have their own features that are 
particularly applicable to different problems. For example, 
ART and the Dimer method are demonstrated to be highly 
accurate in problems where the dynamics of multiple objects 
are involved [13, 15–19]. The original ABC method has 
been demonstrated to be particularly robust in revealing the 

Figure 15.  Results of the identified pathways by the ABC-E method and ART for vacancy migration in hcp Zr. In ABC-E, all 12 pathways 
are identified in a sequence approximately, with increasing migration barrier energy (M1, M1, M1, M2, M2, M1, M2, M1, M1, M2, M2, 
M2). In ART, within 500 searches, 10 different pathways were identified, and the order of the found pathways appears random (M2, M1, 
M2, M2, M2, M2, M1, M2, M1, M1). The values next to the bars represent the number of force evaluations (in units of ×1000), up to which 
the corresponding pathway is identified for the first time.
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underlying mechanisms for unit processes [22, 26, 29]. The 
current ABC-E method extends the accuracy of the original 
algorithm from unit processes to problems where the dynamics 
of multiple objects are involved. Undoubtedly, every tech-
nique has its own advantages and shortcomings. Future work 
benchmarking the similarities, differences, and consisten-
cies among techniques on a variety of problems should prove 
useful for the computational materials community.

6.  Conclusions

Here we presented an extension of the ABC algorithm, called 
ABC-E, to improve accuracy in predicting the kinetics of com-
plex system evolution while retaining efficiency. Specifically, 
the ABC-E algorithm permits the sampling of multiple tran-
sition pathways from a given minimum energy state on the 
potential energy landscape, contrary to the 1D system evolu-
tion exhibited by the original ABC algorithm. When a tran-
sition pathway is found using the original ABC algorithm, 
a blocking penalty function is added onto the saddle point, 
and the system is set back to the original given basin. By per-
forming this procedure iteratively and choosing the blocking 
and search criterion carefully, a series of transition path-
ways associated with the given basin can be identified. We 
demonstrated on a hypothetical PES that the combination 
of ABC-E and on-the-fly kMC calculations allows a signifi-
cantly more accurate description of the kinetics of system 
evolution, matching that of the full catalogue kMC results. By 
comparing ABC-E and the ART method in the simulation of 
vacancy migration in hcp Zr, we have also demonstrated the 
prioritization of sampled paths in the order of increasing acti-
vation energies. This feature of ABC-E enables computation-
ally efficient importance sampling.

This ABC-E algorithm, in combination with other coarse 
graining methods, can provide an opportunity to accurately, 
and relatively efficiently, describe materials’ macroscopic 
behavior in a multi-scale sense. For example, recent related 
works [29, 58] demonstrate a multi-scale framework for stud-
ying the materials’ mechanical response to the surrounding 
environments. Such frameworks require the atomistic mech-
anisms as input, which were provided by the original ABC 
algorithm.

In the latter part of this paper, we employed ABC-E to 
simulate the diffusion of point defects in an anisotropic mate-
rial, the hcp Zr. This problem makes an ideal physical test bed 
for ABC-E because point defect diffusion is associated with 
multiple migration mechanisms that could not be captured by 
the original ABC algorithm, and because an accurate descrip-
tion of point defect diffusion is important for predicting 
microstructure evolution in materials of importance to nuclear 
systems. We demonstrated that the ABC-E method could cap-
ture all the multiple migration mechanisms of vacancies and 
self-interstitial atoms in hcp Zr, consistent with other available 
results from literature. Combining the mechanisms and bar-
riers identified from ABC-E with on-the-fly kMC simulations, 
we assessed the temperature dependence of the vacancy dif-
fusion and SIA diffusion kinetics. An interesting, non-linear 

isotropic-anisotropic-isotropic transition with increasing 
temperature was found for the SIA diffusion. This behavior 
originates from the temperature dependence of the stability of 
the SIA site. The SIA stability favors the O-site at the lower 
temperatures, and the BC-site competes with the O-site with 
increasing temperature when using the MA07 interatomic 
potential in this work. Therefore, at the low temperatures, the 
diffusion is governed by the O-M2-O mechanism, which dis-
plays a 3D diffusion and is more isotropic. As the temperature 
increases, the system has a higher probability of staying at the 
BC state and exhibiting the BC-BC glide motion in 1D with 
increasing anisotropy. At high-enough temperature, the dif-
ferences between all the transitions become insignificant, and 
the diffusion approaches an isotropic pattern. This behavior 
is different from the previously predicted monotonic increase 
of isotropy in SIA diffusion kinetics when using the ABW95 
potential. We believe the different relative stabilities of the O- 
and BC-sites predicted by the different interatomic potentials 
employed are a critical factor that leads to this difference. On 
the other hand, there is yet no clear experimental conclusion 
on the relative stability of different SIA sites [50, 51, 59, 60], 
and this makes it particularly challenging to completely vali-
date the predictions of SIA diffusion in hcp Zr.

There exist a wide variety of problems based on defect 
evolution and mobility in complex media, which involve 
time scales well beyond the reach of traditional molecular 
dynamics simulations. The optimization of the ABC algo-
rithm by Cao et al [24] and the ABC-E method presented here 
are alternative contributions that will allow the resolution of 
the kinetic mechanisms governing the functional behavior of 
materials at the mesoscale [61], in addition to other existing 
atomistic techniques aiming for long time scales.

Acknowledgments

This work was supported by the Consortium for Advanced 
Simulation of Light Water Reactors, an Energy Innovation Hub 
for Modeling and Simulation of Nuclear Reactors under US 
Department of Energy Contract No. DE-AC05-00OR22725. 
Y F would also like to acknowledge the support of Eugene 
P Wigner Fellowship at the Oak Ridge National Laboratory, 
managed by UT-Battelle, LLC, for the US Department of 
Energy under Contract No. DE-AC05-00OR22725.

References

	 [1]	 Crabtree G W and Sarrao J L 2012 MRS Bull. 37 1079
	 [2]	 Yip S 2003 Nat. Mater. 2 3
	 [3]	 Mansur L K 1994 J. Nucl. Mater. 216 97
	 [4]	 Sastry S, Debenedetti P G and Stillinger F H 1998 Nature 

393 554
	 [5]	 Voter A F 1997 J. Chem. Phys.106 4665
	 [6]	 Pal S and Fichthorn K A 1999 Chem. Eng. J. 74 77
	 [7]	 Wang J-C, Pal S and Fichthorn K A 2001 Phys. Rev. B 

63 085403
	 [8]	 Sorensen M R and Voter A F 2000 J. Chem. Phys. 112 9599
	 [9]	 Hara S and Li J 2010 Phys. Rev. B 82 184114

J. Phys.: Condens. Matter 26 (2014) 365402

http://dx.doi.org/10.1557/mrs.2012.274
http://dx.doi.org/10.1557/mrs.2012.274
http://dx.doi.org/10.1016/0022-3115(94)90009-4
http://dx.doi.org/10.1016/0022-3115(94)90009-4
http://dx.doi.org/10.1038/31189
http://dx.doi.org/10.1038/31189
http://dx.doi.org/10.1016/S1385-8947(99)00055-8
http://dx.doi.org/10.1016/S1385-8947(99)00055-8
http://dx.doi.org/10.1103/PhysRevB.63.085403
http://dx.doi.org/10.1103/PhysRevB.63.085403
http://dx.doi.org/10.1103/PhysRevB.82.184114
http://dx.doi.org/10.1103/PhysRevB.82.184114


Y Fan et al

16

	[10]	 Ishii A, Ogata S, Kimizuka H and Li J 2012 Phys. Rev. B 
85 064303

	[11]	 Barkema G T and Mousseau N 1996 Phys. Rev. Lett. 77 4358
	[12]	 Cances E, Legoll F, Marinica M C, Minoukadeh K and 

Willaime F 2009 J. Chem. Phys. 130 114711
	[13]	 Henkelman G and Jonsson H 1999 J. Chem. Phys. 111 7010
	[14]	 Kushima A, Lin X, Li J, Eapen J, Mauro J C, Qian X, Diep P 

and Yip S 2009 J. Chem. Phys. 130 224504
	[15]	 Xu H, Osetsky Y N and Stoller R E 2011 Phys. Rev. B 

84 132103
	[16]	 Haixuan X, Yuri N O and Roger E S 2012 J. Phys.: Condens. 

Matter 24 375402
	[17]	 Xu H, Osetsky Y N and Stoller R E 2012 J. Nucl. Mater. 

423 102
	[18]	 Béland L K, Brommer P, El-Mellouhi F, Joly J-F and 

Mousseau N 2011 Phys. Rev. E 84 046704
	[19]	 Heyden A, Bell A T and Keil F J 2005 J. Chem. Phys. 

123 224101
	[20]	 Kallel H, Mousseau N and Schiettekatte F 2010 Phys. Rev. 

Lett. 105 045503
	[21]	 Rodney D and Schuh C 2009 Phys. Rev. Lett. 102 235503
	[22]	 Wang H, Xu D S, Rodney D, Veyssière P and Yang R 2013 

Modelling Simul. Mater. Sci. Eng. 21 025002
	[23]	 Laio A and Parrinello M 2002 Proc. Natl Acad. Sci. 99 12562
	[24]	 Cao P, Li M, Heugle R J, Park H S and Lin X 2012 Phys. 

Rev. E 86 016710
	[25]	 Fan Y, Kushima A and Yildiz B 2010 Phys. Rev. B 81 104102
	[26]	 Wang H, Rodney D, Xu D, Yang R and Veyssière P 2011 Phys. 

Rev. B 84 220103
	[27]	 Fan Y, Osetsky Y N, Yip S and Yildiz B 2012 Phys. Rev. Lett. 

109 135503
	[28]	 Fan Y, Kushima A, Yip S  and Yildiz B  2014 unpublished
	[29]	 Fan Y, Osetskiy Y N, Yip S and Yildiz B 2013 Proc. Natl 

Acad. Sci. 110 17756
	[30]	 Brommer P and Mousseau N 2012 Phys. Rev. Lett. 

108 219601
	[31]	 Fan Y, Kushima A, Yip S and Yildiz B 2011 Phys. Rev. Lett. 

106 125501
	[32]	 Fan Y, Kushima A, Yip S and Yildiz B 2012 Phys. Rev. Lett. 

108 219602
	[33]	 Lemaignan C and Motta A 1994 Materials Science and 

Technology 10B ed B R T Frost (Weinheim: VCH)
	[34]	 Griffiths M 1988 J. Nucl. Mater. 159 190
	[35]	 Griffiths M 1993 J. Nucl. Mater. 205 225

	[36]	 Hayes T, Kassner M and Rosen R 2002 Metall. Mater. Trans. A 
33 337

	[37]	 Hayes T and Kassner M 2006 Metall. Mater. Trans. A 37 2389
	[38]	 Voskoboinikov R E, Osetsky Y N and Bacon D J 2005 Mater. 

Sci. Eng. A 400–401 49
	[39]	 Voskoboynikov R E, Osetsky Y N and Bacon D J 2005 Mater. 

Sci. Eng. A 400–401 54
	[40]	 Mendelev M I and Ackland G J2007 Phil. Mag. Lett. 87 349
	[41]	 Osetsky Y, Bacon D and de Diego N 2002 Metall. Mater. 

Trans. A 33 777
	[42]	 Voter A F 2007 Radiation Effetcs in Solids ed K E Sickafus, 

E A Kotomin and B P Uberuaga (Berlin: Springer) 1‒24
	[43]	 Bowman G R, Beauchamp K A, Boxer G and Pande V S 2009 

J. Chem. Phys. 131 124101
	[44]	 Prinz J-H, Keller B and Noe F 2011 Phys. Chem. Chem. 

Phys.13 16912
	[45]	 Kushima A, Lin X, Li J, Qian X, Eapen J, Mauro J C, Diep P 

and Yip S 2009 J. Chem. Phys. 131 164505
	[46]	 Lau T T, Kushima A and Yip S 2010 Phys. Rev. Lett. 

104 175501
	[47]	 Li J, Kushima A, Eapen J, Lin X, Qian X, Mauro J C, Diep P 

and Yip S 2011 PLoS ONE 6 e17909
	[48]	 Malek R, Mousseau N and Barkema G T 2001 Mat. Res. Soc. 

Symp. Proc. 677 AA8.4
	[49]	 Subramanian G and Tomé C N 2012 Technical Report 

LA-UR-12-25613
	[50]	 Willaime F 2003 J. Nucl. Mater. 323 205
	[51]	 Domain C and Legris A 2005 Phil. Mag. 85 569
	[52]	 Vérité G, Domain C, Fu C-C, Gasca P, Legris A and 

Willaime F 2013 Phys. Rev. B 87 134108
	[53]	 Khater H A and Bacon D J 2010 Acta Mater. 58 2978
	[54]	 Peng Q, Ji W, Huang H and De S 2012 J. Nucl. Mater. 429 233
	[55]	 Ackland G J, Wooding S J and Bacon D J 1995 Phil. Mag. A 

71 553
	[56]	 Deng C and Schuh C A 2011 Phys. Rev. Lett. 106 045503
	[57]	 http://www.pmc.umontreal.ca/~mousseau/site_an/index.

php?n=Main.Software
	[58]	 Cao P, Park H S and Lin X 2013 Phys. Rev. E 88 042404
	[59]	 Pichon R, Bisognis E and Mosek P 1973 Radiat. Eff. 20 159
	[60]	 Ehrhart P and Schonfeld B 1982 Proc. of Yamada Conference 

on Point Defects and Defects Interactions in Metals  
(Kyoto, November 1981) ed V Takamura, J Doyama and 
M Kiritani p 47

	[61]	 Yip S and Short M P2013 Nat. Mater. 12 774

J. Phys.: Condens. Matter 26 (2014) 365402

http://dx.doi.org/10.1103/PhysRevB.85.064303
http://dx.doi.org/10.1103/PhysRevB.85.064303
http://dx.doi.org/10.1103/PhysRevLett.77.4358
http://dx.doi.org/10.1103/PhysRevLett.77.4358
http://dx.doi.org/10.1088/0953-8984/24/37/375402
http://dx.doi.org/10.1088/0953-8984/24/37/375402
http://dx.doi.org/10.1016/j.jnucmat.2012.01.020
http://dx.doi.org/10.1016/j.jnucmat.2012.01.020
http://dx.doi.org/10.1103/PhysRevE.84.046704
http://dx.doi.org/10.1103/PhysRevE.84.046704
http://dx.doi.org/10.1103/PhysRevLett.102.235503
http://dx.doi.org/10.1103/PhysRevLett.102.235503
http://dx.doi.org/10.1088/0965-0393/21/2/025002
http://dx.doi.org/10.1088/0965-0393/21/2/025002
http://dx.doi.org/10.1073/pnas.202427399
http://dx.doi.org/10.1073/pnas.202427399
http://dx.doi.org/10.1103/PhysRevE.86.016710
http://dx.doi.org/10.1103/PhysRevE.86.016710
http://dx.doi.org/10.1103/PhysRevB.81.104102
http://dx.doi.org/10.1103/PhysRevB.81.104102
http://dx.doi.org/10.1103/PhysRevB.84.220103
http://dx.doi.org/10.1103/PhysRevB.84.220103
http://dx.doi.org/10.1103/PhysRevLett.109.135503
http://dx.doi.org/10.1103/PhysRevLett.109.135503
http://dx.doi.org/10.1073/pnas.1310036110
http://dx.doi.org/10.1073/pnas.1310036110
http://dx.doi.org/10.1103/PhysRevLett.108.219601
http://dx.doi.org/10.1103/PhysRevLett.108.219601
http://dx.doi.org/10.1103/PhysRevLett.106.125501
http://dx.doi.org/10.1103/PhysRevLett.106.125501
http://dx.doi.org/10.1103/PhysRevLett.108.219602
http://dx.doi.org/10.1103/PhysRevLett.108.219602
http://dx.doi.org/10.1016/0022-3115(88)90093-1
http://dx.doi.org/10.1016/0022-3115(88)90093-1
http://dx.doi.org/10.1016/0022-3115(93)90085-D
http://dx.doi.org/10.1016/0022-3115(93)90085-D
http://dx.doi.org/10.1007/s11661-002-0095-4
http://dx.doi.org/10.1007/s11661-002-0095-4
http://dx.doi.org/10.1007/BF02586213
http://dx.doi.org/10.1007/BF02586213
http://dx.doi.org/10.1016/j.msea.2005.03.055
http://dx.doi.org/10.1016/j.msea.2005.03.055
http://dx.doi.org/10.1016/j.msea.2005.03.056
http://dx.doi.org/10.1016/j.msea.2005.03.056
http://dx.doi.org/10.1080/09500830701191393
http://dx.doi.org/10.1080/09500830701191393
http://dx.doi.org/10.1007/s11661-002-1007-3
http://dx.doi.org/10.1007/s11661-002-1007-3
http://dx.doi.org/10.1039/c1cp21258c
http://dx.doi.org/10.1039/c1cp21258c
http://dx.doi.org/10.1103/PhysRevLett.104.175501
http://dx.doi.org/10.1103/PhysRevLett.104.175501
http://dx.doi.org/10.1016/j.jnucmat.2003.08.005
http://dx.doi.org/10.1016/j.jnucmat.2003.08.005
http://dx.doi.org/10.1080/14786430412331334625
http://dx.doi.org/10.1080/14786430412331334625
http://dx.doi.org/10.1103/PhysRevB.87.134108
http://dx.doi.org/10.1103/PhysRevB.87.134108
http://dx.doi.org/10.1016/j.actamat.2010.01.028
http://dx.doi.org/10.1016/j.actamat.2010.01.028
http://dx.doi.org/10.1016/j.jnucmat.2012.06.010
http://dx.doi.org/10.1016/j.jnucmat.2012.06.010
http://dx.doi.org/10.1080/01418619508244468
http://dx.doi.org/10.1080/01418619508244468
http://dx.doi.org/10.1103/PhysRevLett.106.045503
http://dx.doi.org/10.1103/PhysRevLett.106.045503
http://dx.doi.org/10.1103/PhysRevE.88.042404
http://dx.doi.org/10.1103/PhysRevE.88.042404
http://dx.doi.org/10.1080/00337577308232279
http://dx.doi.org/10.1080/00337577308232279

