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Fe1�xS (0.08� x� 0.11) exhibits a simultaneous magneto-structural “k-transition” at approxi-

mately 200 �C. Time-dependent magnetization measurements demonstrate the k-transition can be

accurately modeled by a stretched exponential function, consistent with a nucleation-free, continu-

ous reordering of the vacancy-bearing sublattice. The experimental result is supported by kinetic

Monte Carlo simulations that confirm the activation energy for the transition to be 1.1 6 0.1 eV—

representing the iron vacancy migration energy in ordered Fe1�xS. A mechanistic understanding of

the k-transition enables potential functional uses of Fe1�xS such as thermally activated magnetic

memory, switches, or storage. VC 2015 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4913201]

Pyrrhotites are a set of cation-deficient iron monosulfides

across the narrow composition range 0� x� 0.125 in Fe1�xS.

The unusual magnetic properties of pyrrhotite have long been

studied for their fundamental interest. Recently, Fe1�xS nano-

wires1,2 and nanodisks3 that display an antiferromagnetic

(AF) to ferrimagnetic (FI) “k-transition” upon heating have

been investigated and proposed for technological purposes

such as phase-change magnetic memory devices.4 Fe1�xS is

known to display independent ferroelectric5 and local ferro-

magnetic properties, depending on composition, suggesting it

may be a candidate single-phase multiferroic material,6 simi-

lar to NiS,7 CuCrS2,8 and AgCrS2.9 In this regard, Fe1�xS

presents a low cost, non-toxic, and earth-abundant option.

However, there remains considerable confusion regarding the

mechanisms of the magnetic transitions in pyrrhotite, includ-

ing the origin of the k-transition. Prior attempts to quantify

the AF-FI transformation kinetics assumed simple, exponen-

tial kinetics that fail to capture adequately the underlying

atomic-scale lattice rearrangements.10,11

First, we briefly review the atomic scale structural

changes associated with the k-transition, aided by the phase

diagram in Figure 1(a). The basic unit cell for all Fe1�xS

compositions is NiAs-type hexagonal with the space group

P6�2c. Below a common magnetic ordering (N�eel) tempera-

ture TN of 320 �C, Fe1�xS forms a series of complex, struc-

turally ordered polytypes based on Kagome nets, minimizing

total vacancy-vacancy interaction energy.12 The superstruc-

tures are defined by a periodicity of full- and partially vacant

Fe atom layers, stacked along the c-axis. In-plane, Fe atoms

are aligned ferromagnetically (" " " "), whereas AF (# " # ")
coupling arises between adjacent layers.11 The presence of

iron vacancies on any given a-b plane reduces the overall

ferromagnetic moment; net magnetism is hence determined

by the symmetry of layer occupancy. For example, “4C” pyr-

rhotite (Fe1�xS; x¼ 0.125 6 0.05) adopts a monoclinic struc-

ture in which the cation layers alternate between full and

quarter-vacant, resulting in net ferrimagnetism (Fig. 1(b)).13

In the composition range 0.08� x� 0.11, on the other

hand, Fe1�xS forms a set of AF, hexagonal superstructures

known collectively as “NC,” 5�N� 11 (e.g., Fig. 1(c)14).

The temperature-dependent magnetization r(T) of AF, NC-

ordered pyrrhotites is characterized by the appearance of a

peak during heating, centered around 210 �C, believed to

arise from a diffusive structural rearrangement towards an FI

superlattice (k-transition).15

An initial attempt to replicate the earlier kinetic experi-

ments of Marusak et al.11 revealed a more complex time-

evolution of the ferrimagnetic superlattice than previously

appreciated. Instead of a simple exponential fit, we demon-

strate the magnetokinetics are better modeled by a phenome-

nological, stretched exponential function of the form

aðtÞ ¼ 1� exp ½�ðt=sÞn�; (1)

where s describes a temperature-dependent relaxation time,

and n¼ 0.45 6 0.05. Moreover, we conducted kinetic Monte

Carlo (kMC) simulations of the k-transition that reproduced

the structural evolution on the experimental timescale from

an AF to FI lattice under cation vacancy diffusion alone. The

kMC results similarly give a stretched exponential time de-

pendence and help understand the transition as a continuous-

ordering transformation. A physical basis for the stretched

exponential form of the kinetics is discussed. Finally, we

show the temperature dependence of s in Eq. (1) yields an

activation energy of 1.1 6 0.1 eV for the k-transition, which

can be taken as the migration energy for cation diffusion in

ordered pyrrhotite.
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Fe7S8 (4C), Fe10S11 (11C), and Fe11S12 (6C) pyrrhotite

samples were prepared by reacting the requisite amounts of

high-purity iron and sulfur powders in vacuum-sealed quartz

tubes.14 Magnetic measurements were obtained using a

variable-temperature Vibrating Sample Magnetometer

(VSM) under a flowing N2 atmosphere and an applied field

of 10 kOe.

Temperature-dependent magnetization r(T) results for

the 4C, 11C, and 6C Fe1�xS samples are shown in Figure 2.

The 4C pyrrhotite followed reversible FI, Weiss-type behav-

ior as expected up to TN¼ 320 �C (Fig. 2(a)). However, the

11C and 6C displayed markedly different r(T) behavior

(Figs. 2(b) and 2(c)). On the first heating cycle, labelled (1)

in the figures, r started close to 0 emu/g, consistent with AF

ordering. The k-transition peak10,11 was observed starting

around 180 �C, with a maximum at 210 �C. However, during

the cooling portion of the cycle from 350 �C, the peak was

not reproduced and r increased with Weiss behavior back to

room temperature. Multiple, repeated heating/cooling cycles

(2–5) as indicated on the curves only served to increase over-

all magnitization further. The maximum room temperature

magnetization rRT reached by 11C after several experimental

cycles (�13 emu/g) was greater than that of the 6C sample

(�10 emu/g); neither reached the maximum of the 4C sam-

ple (rRT� 22 emu/g). Thus, the final r for a given structure

is limited by the availability of iron vacancies VFe to maxi-

mize the magnetic asymmetry between vacancy-bearing and

full layers.

To understand the transformation kinetics in more

detail, we performed isothermal, r(t) measurements on sam-

ples of 11C between 140–220 �C. Assuming VFe diffusion-

driven exponential growth in r during the k-transition, iron

self-diffusion coefficients on the order of 10�17 cm2 s�1 have

been found by magnetokinetic methods within this transition

temperature range11 that are inconsistently low compared to

extrapolated diffusivities obtained from high-temperature

sulfidation19,20 and radiotracer diffusion studies [O(10�14

cm2 s�1)].21 However, we found that our magnetokinetic

data were more accurately described by the stretched expo-

nential function in Eq. (1).14

We first converted experimental r to “phase fraction” of

FI ordering, aFI, according to

aFI ¼
rt � rið Þ
rf � rið Þ

; (2)

where rt is the measured magnetization at time t, ri is initial

magnetization at t¼ 0, and rf is final magnetization assum-

ing the transition were allowed to proceed to completion. rf

values for the different temperatures were therefore obtained

FIG. 1. (a) Fe-S phase diagram in the composition range 0� x� 0.125 in Fe1�xS, showing the existence range of the different pyrrhotite polytypes.14

Experimentally determined temperatures for the a-, b– and k–transition onsets (Ta, TN, and TC, respectively) are also shown.16–18 (b) Equilibrium Fe1�xS 4C

superstructure with alternating full and partially vacant occupancy of AB-layers. An uncompensated magnetic moment results in net ferrimagnetism. “F” refers

to full Fe layers; A–D are vacancy-bearing layers with different in-plane vacancy arrangements. (b) Idealized 5C superstructure with net magnetic compensa-

tion between full and vacancy-bearing layers; net antiferromagnetism.

FIG. 2. Temperature-dependent mag-

netization r(T) for: (a) 4C, (b) 11C, and

(c) 6C pyrrhotite samples. Multiple

consecutive forward and reverse sweeps

between 30 and 330 �C, as labelled 1–5

on each of the graphs, were performed

until no change from the previous

sweep was observed. On (b) and (c) the

inset graphs show a magnified region

around the peak observed on the first

sweep. The heating and cooling rates

were both 0.2 �C/min; the applied field

was 10 kOe.
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from curve number (4) in Fig. 2(b), i.e., the maximum FI

magnetization.

The experimental data were complemented by kMC

simulations (full details in Ref. 14), based on the probability

P of a diffusive vacancy jump, given by: (i) the intrinsic acti-

vation barrier to migration Em; (ii) an energy bias, Etherm,

due to a thermodynamic driving force towards ordering; and

(iii) a bias due to the magnetic energy, Emag

P ¼ �: exp � Em

kBT

� �
exp �Etherm

kBT

� �
exp �Emag

kBT

� �
; (3)

where kB is Boltzmann’s constant. The energy barrier Em was

taken to be 1.2 eV, as calculated from Density Functional

Theory.14 The energy term Etherm was based on thermody-

namic data for pyrrhotite polytypes.22 Subsequent to each

diffusive jump, an order parameter H was assigned to the

updated structure, based on the root mean squared (RMS) dif-

ference from the periodically alternating occupancy of a per-

fectly vacancy-segregated superstructure. Net magnetization

r was evaluated by summing over all individual magnetic

moments on lattice sites.

Figures 3(a) and 3(b) show the results for the experi-

mental and simulated k-transition magnetokinetics, with

n¼ 0.45 6 0.05 and 0.67 6 0.05, respectively (sensitivity

analysis in Ref. 14). Nevertheless, the kMC model, based

solely on cation diffusion, accurately replicates the

stretched exponential form of the experimental results. The

parameters s in Eq. (1) generally represents a temperature-

dependent relaxation time and n describes the deceleration

in transition kinetics as it progresses. Stretched exponential

magnetokinetics have been observed for Li2(Li1�xFex)N

due to non-instantaneous magnetic moment relaxation,23

unlikely at the elevated temperatures used in this work.

Alternatively, we can consider the k-transition as a classical

nucleation and growth process, described by the semi-

empirical Johnson-Mehl-Avrami-Kolmogorov (JMAK)

relation that takes the same form as Eq. (1). For example,

the antiferromagnetic-ferromagnetic transition in FeRh

has been described by a JMAK equation with n¼ 0.86.24

The Avrami exponent n may provide information about

the nucleation and growth mechanisms.25 However, we

believe the microscopic transition mechanism can be better

described as a diffusion-limited, continuous re-ordering

process akin to spinodal decomposition. As such, the FI

phase grows out of the AF lattice via an augmentation in

small, layer-by-layer vacancy occupancy fluctuations. A

second-order transition of this type is consistent with a

continuity in enthalpy H but discontinuous heat capacity

@H/@T during the k-transition, as measured by DSC.14

Recalling the interdependence between the vacancy and

magnetic structures, the simulation results thus visualize the

emergence of diffuse regions of intermediate H that gradu-

ally spread across other lattice points in diffuse zones rather

than the formation of discrete FI nuclei (Figs. 4(a)–4(e)),

also seen in Figure 4(f), where small fluctuations in layer-by-

layer vacancy occupancy augment with time into an

alternating-plane, FI structure.

The stretched exponential fits of Eq. (1) to our measured

and calculated r(t) take the same form as the Kohlrausch (or

KWW) function,26 commonly used to describe non-

equilibrium dynamics in disordered condensed matter27,28

and diffusion in complex systems.29 Although generically

semi-empirical, we may draw some parallels with mathemat-

ical derivations for the Kohlrausch function30 to suggest a

more physical basis for the observed behavior. For example,

a small energy distribution of energy traps may lead to devi-

ations from “random walk” Brownian motion diffusion.

Alternatively, there may be a time-dependence in populating

different traps, such that relaxation occurs in stages.31 We

dismiss the former since Brownian motion was inherently

assumed in our kMC model. On the other hand, a time-decay

in the rate of magnetization evolution may be more coher-

ently explained by a combination of rapid and subordinate,

slower processes. In other words, given sufficient thermal

FIG. 3. (a) Transformed ferrimagnetic volume fraction a measured over

10 000 s at four temperatures as indicated. We show every twentieth point

of the raw data, as well as a best fit line to the phenomenological, stretched

exponential relation aðtÞ ¼ 1� exp ½�ðt=sÞn�, with error represented as

standard deviation. Inset: Arrhenius fit of the temperature-dependent fitting

parameter s�1, with a slope corresponding to a transformation activation

energy of 1.1 6 0.1 eV. (b) kMC reullts for magnetization transformation

at the same temperatures, and fit to a similar stretched exponential fit.

Inset: corresponding activation energy of 1.1 eV calculated from computa-

tional s�1.
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energy cation vacancies may migrate rapidly to adjacent

planes under a large thermodynamic driving force and break

the magnetically compensating AF lattice symmetry. Small

regions with localized FI ordering would nonetheless con-

tribute a large increase in r on the scale of 10–100 s of sec-

onds. At longer times, however, the formation of the optimal

FI lattice structure for the available vacancy concentration

requires a more labored rearrangement of vacancies into

long-range order, slowing down the growth in r. Only out-

of-plane VFe hops contribute to a rise in magnetization; how-

ever, in-plane hops continue to occur and would contribute

to the lengthening of the relaxation time. We compared the

ratio of out-of-plane to in-plane hops during the k-transition

in our kMC model and found that it decreased over time.

Due to vacancy repulsion effects, the further the transition

progresses, the lower the driving force for vacancy segrega-

tion and the smaller the probability of out-of-plane jumps.

Finally, we turn to the significance of the activation

energy of 1.1 6 0.1 eV measured by fitting the experimental

r(t). A migration barrier for diffusion of 1.2 eV was origi-

nally cast into our kMC model based on DFT calculations.

An analysis of the resulting kMC data using the same fitting

procedure as for the experiment returned an apparent barrier

value of 1.1 eV, confirming that the major rate-limiting step

is cation diffusion. The measured activation energy

includes a thermodynamic bias for the transformation on

the order of 0.1 eV at 200 �C, which lowers the diffusion

barrier slightly.

In conclusion, we have investigated the antiferromag-

netic to ferrimagnetic k-transition in NC-type pyrrhotites

via magnetokinetic experiments and kinetic Monte Carlo

simulations. In contrast to previous reports, the transforma-

tion follows a stretched exponential time-dependence.

These experimental and computational results together sup-

port a description of the k-transition as a nucleation-free,

continuous reordering via diffusion on the cation sublattice.

Magnetization initially rises rapidly due to small, localized

displacements, but a full optimization of the ferrimagnetic

superstructure is a more complex process that emerges only

at longer timescales. The migration energy barrier for Fe in

magnetic pyrrhotite is confirmed to be approximately

1.1 eV. The elucidation of the kinetics for this k-transition

stimulates continued studies of the rate-limiting steps of

this interesting magnetic transition and the consideration of

synthetic Fe1�xS in multiferroic systems, magnetic switch-

ing, or data recording devices enabled by earth-abundant

elements.
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